Adsorption of mercury(ii) with an Fe3O4 magnetic polypyrrole–graphene oxide nanocomposite
نویسندگان
چکیده
To enhance the ability to remove mercury(II) from aqueous media, an Fe3O4 magnetic nanocomposite (PPy–GO) composed of polypyrrole (PPy) and graphene oxide (GO) was synthesized in situ and characterized via scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectrometry (XPS), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FT-IR), zeta potential analysis, vibrating sample magnetometer (VSM) and the Brunauer–Emmett–Teller (BET) method. The performance of the magnetic PPy–GO for adsorbing mercury(II) from water along with the effects of solution pH, adsorbent dosage, coexisting ions, reaction time and temperature were studied in detail. The adsorption kinetics, isotherms and thermodynamics were investigated in detail to gain insights into the adsorption process. The results show that the BET surface area of the magnetic PPy–GO reached 1737.6 m g . The Langmuir capacity of the magnetic PPy–GO for mercury(II) adsorption was 400.0 mg g 1 at 300 K and pH 7 0.1. After adsorption, the magnetic PPy–GO nanocomposite could be efficiently separated from water via a magnetic field. The adsorption process was endothermic and spontaneous and occurred in accord with the Langmuir and pseudo-second-order models. The overall adsorption of mercury(II) not only involved chemisorption, but was also partially governed by intra-particle diffusion. Data from the preliminary application of magnetic PPy–GO to remove heavy metals from real electroplating effluent indicated a high removal efficiency of over 99% for mercury(II). Finally, a possible adsorption mechanism was discussed. All data showed that the magnetic PPy–GO material is a promising adsorbent to remove mercury(II) from aqueous media.
منابع مشابه
Graphene oxide–magnetite nanocomposite as an efficient and magnetically separable adsorbent for methylene blue removal from aqueous solution
We report a facile method to produce a magnetically separable graphene oxide–magnetite nanocomposite (GO–Fe3O4) and its adsorption performance in methylene blue (MB) removal from aqueous solution. The GO–Fe3O4 nanocomposite was synthesized by a solution-phase self-assembly method including the incorporation of monodisperse Fe3O4 nanoparticles (NPs) and GO in a dimethylformamide/chloroform mixtu...
متن کاملSorption of Thorium Using Magnetic Graphene Oxide Polypyrrole Composite Synthesized from Water Hyacinth Roots
Polypyrrole magnetic graphene oxide (PPy/MGO) composites have been synthesized from a natural source (water hyacinth roots) using polymerization technique for Th(IV) ions pre-concentration from aqueous solutions. The effects of controlling factor have been studied using the batch technique. The obtained results show that the maximum Th(IV) adsorption capacity by PPy/MGO composite is 277.8 m...
متن کاملA Kinetic Study on Adsorption of Congo Red from Aqueous Solution by ZnO-ZnFe2O4-polypyrrole Magnetic Nanocomposite
In this work, magnetically separable ZnO-ZnFe2O4-PPy nanocomposite as an efficient adsorbent was synthesized by two steps. At first, zinc oxide (ZnO) and ZnFe2O4 nanoparticles were synthesized using simple and facile precipitation method. Then, ZnO-ZnFe2O4 mixed oxide was modified by polypyrrole (PPy). The adsorbent was character...
متن کاملChemical design of a smart chitosan-polypyrrole-magnetite nanocomposite toward efficient water treatment.
A magnetic chitosan-polypyrrole-magnetite (Cs-PPy-Fe3O4) nanocomposite is prepared in a simple one-step method via in situ chemical polymerization of pyrrole using anhydrous FeCl3 as an oxidant in the presence of Cs. Magnetic Fe3O4 nanoparticles of size in the range of 10-20 nm are successfully introduced into the Cs-PPy matrix. Adsorption of an anionic dye (acid green 25, AG) from aqueous solu...
متن کاملSynthesis of graphene oxide-Melamine – TioOxalic acid nanocomposite and its application in the elimination of Mercury (II) ions
In this study a new method by Application of graphene oxide Nano sheets– Melamine –TioOxalic acid composite was exhibited as adsorbent for the elimination of toxic mercury (II) ions from aqueous solutions. The combine has the authority to adsorb the organic and inorganic combines. Through the immobilization of Melamine-TioOxalic acid (MTO) onto graphene oxide nanosheets, the desired composite w...
متن کامل